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By Ashley Totin, Eric MacDonald, 
and Brett Conner

INTRODUCTION

A dditive manufacturing (AM) is
causing a fundamental 

manufacturing paradigm shift that is 
changing how aircraft are now 
maintained and sustained.  
Sustaining an aging aerospace fleet 
is an enormous challenge.  The U.S. 
Department of Defense maintains 
nearly $100 billion worth of spare 
parts and has to balance avoiding 
excess inventory [1] while 
simultaneously preventing stock-out 
[2].  A large 747-type aircraft can 
have nearly 6 million individual parts 
produced by a global supply chain of 
approximately 550 companies, some 
of which may not exist a decade from 
now [3].  Sustainment organizations 
struggle with long lead times, 
resulting in maintenance delays or 
grounded aircraft.  For example, the 
Oklahoma City Air Logistics Complex 
reported lead times as long as 800 
days for constant speed drive 
castings [4].  Meanwhile, at the end 
of 2016, 29% of all U.S. Marine Corps 
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F/A-18 Hornets were grounded pending 
spare parts [5]. 

AM emerged as a potential solution to 
reduce both lead times and inventory 
costs.  The technology is well suited for 
fabricating low-volume, customized, 
and complex components [2, 6–8].  
An analysis of the global aerospace 
maintenance, repair, and overhaul 
market identified that if 15% of 
replacement parts could be produced 
with AM, over $1 billion in materials and 
transportation-related savings could 
be realized; commercial airlines would 
see $250 million in additional liquidity 
as a result of reduced inventory costs 
[9].  Moreover, these analyses were 
only predicated on printed replacement 
parts and did not include the additional 
benefits of three-dimensional (3D) 
printed tooling, fixtures, jigs, or 
prototypes [9].

AM is also beneficial for part count 
reduction and weight savings.  Since 
AM creates parts layer by layer, complex 
shapes can be designed and fabricated.  
This would not be possible with 
conventional methods [7].  For example, 
a geometrically-complex part fabricated 
traditionally may be designed as 
multiple parts which are then joined or 
assembled.  Alternatively, by using AM, 
this assembly can be consolidated into a 
single piece and reduce assembly costs.  
Another example would be reducing 
the part’s weight by only depositing 
material where it is required for strength 
and stiffness.  Mathematical tools can 
optimize the topology (i.e., shape) [10] or 
integrate lattice structures [11] in order 
to reduce weight without compromising 
performance.

The aerospace, medical, and automotive 
industries adopted AM early [12].  In 
2017, the aerospace sector comprised 
nearly 19% of the AM market [13].  In 
the U.S. Air Force, the three air logistics 
complexes integrated AM into aircraft 

maintenance and sustainment efforts 
[14].  The U.S. Navy concluded that 
$1.49 billion would be saved annually 
on staffing and organizational costs 
by applying AM within maintenance 
programs [15].  Companies such as 
Boeing, Lockheed Martin, General 
Electric, and Airbus demonstrated how 
AM can reduce lead times, component 
weight, operational costs, and 
environmental impacts [16].  General 
Electric (GE) invested $1.5 billion in AM, 
including research and development, 
implementing 3D printing technology, 
and production [17].

AM PROCESSES AND 
AEROSPACE MATERIALS
Seven AM process categories [18] have 
been identified, and various materials 
can be fabricated through AM in 
each (see Table 1 and Figure 1).  The 
resulting mechanical performance has 
improved due to advanced materials 
and improving manufacturing processes.  
Lightweighting is critical for aerospace 
structures.  Lightening plate and web 
structures through traditional machining 
from thick billet requires an estimated 
6 lbs of billet needed for every 1 lb of 
material contained within the final part 

(or a 6:1 “buy-to-fly” ratio) [19].  AM 
produces near net shape parts, resulting 
in significantly reducing this ratio [20].

A diversity of materials can be made 
using AM, including polymers, metals, 
ceramics, sand, paper, and composites 
[13, 21–23].  Materials and processes 
most relevant to aerospace maintenance 
and sustainment are shown in Table 2.

APPLICATIONS  
SPECIFIC TO AEROSPACE 
MAINTENANCE AND  
SUSTAINMENT
With the multiple AM processes 
and functional materials available, 
the aerospace industry is using the 
technology for many applications specific 
to maintenance and sustainment.  
The next subsections explore how the 
aerospace sector is currently using AM.

Prototyping

One of the original applications for 
AM is rapid prototyping for fit checks, 
with significant utility in aerospace 
maintenance and repair [36].  For 
example, Fleet Readiness Center (FRC) 
Southwest created a prototype of a 
tub-fitting reinforcement.  Once the fit 
was verified, the part was machined 

Table 1:  Process Categories of AM as Defined by ISO/ASTM 52900-15 [18]

PROCESS DEFINITION

Vat 
Photopolymerization

Liquid photopolymer in a vat is selectively cured by  
light-activated polymerization.

Material Extrusion Material is selectively dispensed through a nozzle or 
orifice.

Powder Bed Fusion Thermal energy selectively fuses regions of a powder bed.

Binder Jetting A liquid bonding agent is selectively deposited to join 
powder materials.

Material Jetting Droplets of build material are selectively deposited.

Directed Energy 
Deposition

Focused thermal energy is used to fuse materials by 
melting as they are deposited.

Sheet Lamination Sheets of material are bonded to form a part.

DSIAC Journal • Volume 6 • Number 2 • Spring 2019  /  5 AM
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Figure 1:  Examples Representing Each of the ASTM/ISO 52900-15 Categories of AM Equipment (Sources:  Carbon and Impossible Objects, Youngstown State 
University and University of Texas at El Paso).

Table 2:  Aerospace Relevant Materials Produced Using Additive Manufacturing

MATERIAL 
TYPE AM PROCESS MATERIALS SOURCES

Polymers Material 
extrusion

Acrylonitrile butadiene styrene, polycarbonate, ULTEM 9085, 
polyphenylsulfone, high-impact polystyrene, and polyethylene 
terephthalate

[13, 24–26]

Powder bed 
fusion (i.e., 
selective laser 
sintering)

Polyamide 11 and 12 (including fire-resistant varieties), 
polyetherketoneketone, and polyetherketoneketone 

[13, 27, 28]

Composites Material 
extrusion

Chopped carbon fiber-filled AB; carbon fiber (CF)-filled nylon; and CF-filled 
nylon reinforced by continuous Kevlar, fiberglass, or CF

[29, 30]

Sheet lamination Printed layups of Kevlar, fiberglass, and CF [31]

Metals Powder bed 
fusion and 
directed energy 
deposition

Tool steels, stainless steels, titanium alloys (i.e., Ti-6Al-4V), aluminum 
alloys (generally, Ai-Si-Mg and not yet 2000, 6000, or 7000 series), nickel-
based alloys (i.e., Inconel 625 or 718), cobalt-chromium alloys, copper-
based alloys, platinum, palladium, tantalum, and high-entropy alloys

[13, 32–34]

Binder jetting Stainless steels, tool steels, titanium alloys [13, 35]

Sheet lamination Most metals found in sheet or foil form, including aluminum, stainless 
steel, tantalum, nitinol, and copper

[13]
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out of aluminum [37].  As computer 
numerical control (CNC) machining 
is time consuming, relatively labor-
intensive (especially for programming), 
and possibly capacity-constrained, 
AM prototypes (Figure 2) can prevent 
waste due to incorrect geometries or 
dimensional tolerances. 

Tooling, Fixtures, and Jigs

The “low-hanging fruit” of AM is the 
reduction in cost and time for aerospace 
maintenance and sustainment through 
fabricating tooling, fixtures, and jigs.  
The benefits can be realized nearly 
immediately without the qualification 
and certification challenges associated 
with AM end-use parts.  For each 
aerospace vehicle, hundreds of fixtures, 
guides, templates, and gauges can 
be printed with AM, reducing cost and 
lead time by 60–97% [38, 39].  An 
industrial supplier for composite parts 
has identified 79% savings in cost and 
96% savings in lead time by replacing 
CNC machining with material extrusion 
to produce tooling [40]. 

In addition to cost and lead-time 
savings, AM tooling can be large.  In 
2016, Oak Ridge National Laboratory 
(ORNL) produced a 777X composite 
wing trim and drill guide using Big Area 
Additive Manufacturing, as shown in 

Figure 3.  At that time, the structure was 
the largest 3D printed object ever and 
leveraged the carbon-reinforced polymer 
processing from ORNL [41]. 

Military maintenance and sustainment 
organizations have also leveraged AM 
for tooling.  Since 2006, the FRC-East 
Cherry Point has supported the fleet by 
using AM to create custom tooling [42] 
and demonstrated material extrusion 
printed tooling for sheet metal press 
and stretch forming and composite 
layup tooling [26].  AM tooling was used 
to return an AV-8B to flight that was 
damaged during a hard landing at sea, 
with polycarbonate material extrusion 
tooling used to press form sheet metal 
doublers required for the repair [26].

Aerospace metal castings can also 
take advantage of AM tooling in an 
industry where lead times of 10–12 
months are common [43].  A team 
from Autodesk and Aristocast designed 
a modulating matrix structure for an 
investment casting pattern to cast a 
super-light airplane seat frame (shown 
in Figure 4).  The computer-optimized, 
lattice structure provided a 35% lighter 
seat while meeting performance 

specifications.  The frame was cast 
in magnesium, resulting in a total 
weight savings of 56% compared to 
conventional aluminum subtractive 
manufacturing. 

Binder jetting is used to create tooling 
for sand casting.  When AM is used for 
core fabrication, material scrap can be 
reduced by 90% compared to traditional 
manufacturing [44].  Other benefits of 
AM sand casting are reductions in lead 
time and cost, improved functionality, 
and increased customization [44].  AM 

Figure 2:  A Drill Guide Built With a Desktop Material 
Extrusion Printer (Source:  Darrell Wallace).

Figure 3:  One of the Largest AM-Produced Parts in the World (Source:  Oak Ridge National Laboratory).

Figure 4:  An AM-Enabled Magnesium Investment 
Casting of an Airbus Seat Frame (Source:  
Autodesk).
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for casting tooling improves lead times 
and decreases costs by eliminating 
the need for a hard pattern.  Complex 
geometries enabled by AM-printed 
sand molds can reduce weight or 
improve designs for thermal dissipation.  
Furthermore, when AM tooling enables 
part consolidation of castings, the new 
cast part can have increased durability 
by eliminating welds or fasteners. 

Repair

AM is utilized for repairing metal 
aircraft engine parts such as turbine 
engine parts, blades, compressors, 
and housings.  When a part is worn or 
broken, the part is normally scrapped 
and a new part manufactured; however, 
with AM, the lifetime of the part can 
be extended [45].  Parts are repaired 
by removing the damaged material 
area and reconstructing the part 
using the undamaged area [46].  The 
most common AM process for repair 
is directed energy deposition (DED).  
The value of AM repair is impacted by 
factors such as inspection for defects, 
the ability to repair the part in the field, 
the speed and cost of alternative repair 
techniques, and the requirement to 
restore the part to the original form with 
the same mechanical properties [47].

Laser Engineered Net Shaping (LENS) 
from Optomec successfully repaired 
parts used in gas turbine engines 
[45].  Repairing a bearing housing 
using LENS was only 50% of the cost 
of buying a new housing, with the lead 
time decreasing from several weeks 
to a few days [48].  One particularly 
dramatic example is BeAM, a European 
manufacturer of DED machines, which 
repaired over 800 aerospace parts 
and extended the life of the part from 
10,000 to 60,000 hours [49]. 

 

End-Usable Parts

Another application for aerospace 
and defense is the direct fabrication 
of end-usable parts.  One of the most 
visible examples of metal AM parts 
for maintenance and sustainment 
has been the U.S. Naval Air Systems 
Command’s (NAVAIR’s) demonstration of 
a titanium link and fitting assembly for 
the engine’s nacelle on the V-22 Osprey 
aircraft (shown in Figure 5).  This part 
had to undergo extensive materials and 
performance testing for qualification and 
certification before being placed on the 
aircraft [50, 51]. 

A plastic material extrusion desktop 3D 
printer was used by the U.S. Marines on 
the USS Wasp to make a replacement 
plastic bumper for an F-35B landing gear 
door (see Figure 6).  In the left photo 
of the figure, CWO2 Daniel Rodriguez 

is holding the 3D printed plastic F-35B 
landing gear bumper for an F-35B 
Lightning II.  On the right is Sgt. Adrian 
Willis demonstrating the 3D printer 
used to print the bumper part.  This 
replacement part saved $70,000 and 
several days, as the only way to replace 
the bumper without 3D printing would 

When AM is used for core 
fabrication, material scrap 

can be reduced by 90% 
compared to traditional 

manufacturing.

Figure 5:  Titanium Link and Fitting Assembly for the V-22 (Source:  Noel Hepp, U.S. Navy).

Figure 6:  (Top) CWO2 Rodriguez Holding the 
Bumper and (Bottom) Sgt. Willis Demonstrating the 
3D Printer (Source:  U.S. Marine Corps Photos by 
Cpl. Stormy Mendez).
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have been to order and ship a complete 
door to the Wasp [52]. 

AM also enables complex designs where 
material is added only where needed 
to provide strength, stiffness, interface, 
or manufacturability requirements; 
the design freedom can lead to weight 
savings.  One design team analyzed the 
benefits of AM for a commercial airplane 
seat buckle redesigned to save energy  
and weight.  By redesigning for AM, the  
weight dropped from 155 g to 68 g.  
With 853 seats in an Airbus A380, the 
replacement design would recover a 
total of a 74 kg, resulting in a lifetime 
savings of 3,300,000 liters of fuel [53].

GE Aviation demonstrated the combined 
benefits of weight savings and part 
consolidation in the next-generation, 
additively-manufactured LEAP fuel 
nozzle.  The nozzles were redesigned 
from a 20-part assembly to a single 
component, with a 25% weight 
reduction.  Not only were the nozzles 
lighter, but more durable and 5x stronger 
than the original design [54–55].  GE 
plans to manufacture up to 100,000 
parts with AM by 2020 [16].

AM is also revolutionizing manufacturing 
in space. The National Aeronautics 
and Space Administration (NASA) has 
identified AM for remote manufacturing 
for sustainment of long-duration 
missions and human exploration [56].  
The Made In Space material extrusion 
printer was installed on the International 
Space Station (ISS) in November 2014, 
later followed in March 2016 by the 
installation of the more capable Additive 
Manufacturing Facility (AMF) at the ISS 
[57].  Another exciting application area 
of AM in space is the potential to print 
and deploy satellites in orbit, potentially 
providing a means of reconstituting 
satellite constellations degraded due 
to age, natural damage, or combat 
[58–59].

QUALIFICATION AND  
CERTIFICATION
The aerospace industry uses 
qualification, certifications, and quality 
controls in order to ensure public safety.  
The qualification and certification 
process for aircraft components can 
cost over $130 million and take up 
to 15 years, as shown in Figure 7 
for a traditional Federal Aviation 
Administration (FAA) certification 
approach [32, 60].  Using AM for  
direct-part production presents 
a challenge for qualification and 
certification, especially for critical 
components [60].  The AM process 
is relatively new and, consequently, 
has few standards and minimal flight 
heritage.  Therefore, many companies, 
organizations, and the government are 
encouraging the creation of standards 
[32, 61].  Studies have estimated 
for one given AM process, there are 
over a hundred variables that need to 
be controlled to produce stable and 
repeatable parts [62].  The lack of AM 
standards results in several barriers for 
AM implementation—material data are 
not comparable between companies, 
different process parameters are used 
by various AM machine operators, 
repeatability of results can be 

insufficient, and few specifications exist 
to ensure a product is built as specified [8].

The FAA established the Additive 
Manufacturing National Team to 
collaborate with industry, academia, and 
government agencies in applying current 
FAA regulations to AM products and 
developing guidelines to certify structure 
safety.  One of the first metal AM parts 
certified by the FAA was GE Aviation’s 
T25 sensor housing.  GE designed, 
prototyped, produced, and certified this 
part in only 4 months and initiated a 
retrofit on 400 fielded engines [54].

In metal AM processes like powder 
bed fusion, unique material issues 
exist that impact qualification and 
certification.  Mechanical properties 
are not uniform within a part.  Inherent 
material anomalies could affect fracture 
toughness and fatigue (i.e., cyclic 
loading) strength, including lack of 
fusion, distributed porosity, inclusions, 
and residual stress [33].  For AM, an 
important step in process qualification 
is monitoring the AM process during 
part builds to identify process errors 
detrimental to the component.  
Research is ongoing to detect defects 
while a metal AM build is in progress [63].

Figure 7:  The Traditional FAA Building Block Test Approach for Certification [60].

Building Block Test Structure Required for Certification Specimen
Count

Cost
($M)

Time
(Yrs)

Analysis
Validation

2–3 100–125 4

10–30 10–20 3

Design-Value
Development

25–50 10–35 3

2,000–5,000 10–35 3

Material
Property  
Evaluation

5,000–100,000 8–15 2

Full-
Scale
Article

Components

Sub-components

Elements

Coupons
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Collaboration is necessary to accelerate 
adopting AM and address qualification 
and certification issues.  America Makes, 
a public-private partnership established 
by the federal government, has focused 
on addressing AM challenges through 
government, industry, and academia 
collaboration [64, 65].  In 2016, 
America Makes and American National 
Standards Institute (ANSI) formed the 
Additive Manufacturing Standardization 
Collaborative (AMSC) to bring together 
Standards Development Organizations 
such as American Society for Testing and 
Materials (ASTM) International, American 
Welding Society, Institute of Electrical 
and Electronics Engineers (IEEE),  
and the International Organization  
for Standardization (ISO).  In  
February 2017, the first version of  
a standards roadmap was completed 
[66].  This roadmap listed existing 
standards and specifications for AM, 
identified AM-related standards in 
development, and outlined gaps  
where new standards are needed. 

CONCLUSION
AM is a suite of manufacturing 
processes that can reduce maintenance 
time and costs through prototyping, 
tooling, fixtures, jigs, part repair, and 
spare part production.  Reductions 
in lead time, cost, and improved 
buy-to-fly ratio are realized today.  If 
design changes are permitted, then 
complex geometric lightweight parts 
will enable energy-saving and positive 
environmental impact.  

Challenges still need to be overcome 
to enable more widespread adoption 
of AM, including process control, 
geometric tolerances, quality assurance, 
and repeatability [67, 68].  Process 
control, known material properties, and 
confidence in repeatedly obtaining these 
properties are needed for certification 
authorities when dealing with flight-
critical parts [24, 32].  AM designing 

is another obstacle.  Engineers taught 
design approaches for traditional 
manufacturing now need to adapt to 
leverage the design freedoms of AM 
[14, 45].  One study revealed barriers 
to adopting AM, including cost, lack of 
trained talent, uncertainty of quality of 
final product, and printer speed [69]. 

The needs for maintenance and 
sustainment are substantial, particularly 
for legacy fleets.  The perceived benefits 
of AM outweigh the challenges.  As 
a result, AM will inevitably play a 
greater role in aerospace production, 
maintenance, and sustainment. 
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